

AISLAMIENTO TÉRMICO

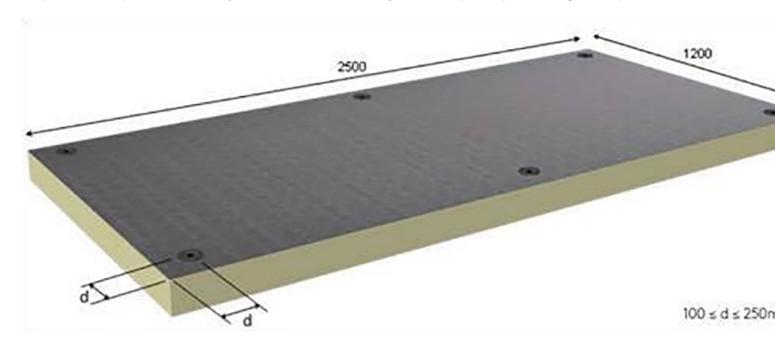
DANOPIR VV

Paneles aislantes rígidos de espuma de poliisocianurato (PIR) ligeros y de sencilla colocación, revestidos en ambas caras con un complejo multicapa de velo de vidrio bituminado.

PRESENTACIÓN

Las dimensiones de los paneles fabricados son 1.200 x 2.500 mm (ancho x longitud). Estos paneles pueden ser fabricados en los siguientes espesores y acabados (tipo de fresado):

Producto _ Código	Anchura	Longitud	Espesor	Paneles/ _ Palet	M²/ _ Palet
DANOPIR VV 30 Cod. 673021	1200	2500	30	80	240
DANOPIR VV 40 Cod. 673022	1200	2500	40	60	180
DANOPIR VV 50 Cod. 673023	1200	2500	50	50	150
DANOPIR VV 60 Cod. 673024	1200	2500	60	40	120
DANOPIR VV 70 Cod. 673025	1200	2500	70	35	105
DANOPIR VV 80 Cod. 673026	1200	2500	80	30	90
DANOPIR VV 90 Cod. 673027	1200	2500	90	25	75
DANOPIR VV 100 Cod. 673028	1200	2500	100	25	75
DANOPIR VV 110 Cod. 673029	1200	2500	110	24	72
DANOPIR VV 120 Cod. 673030	1200	2500	120	20	60
DANOPIR VV 130 Cod. 673031	1200	2500	130	18	54
DANOPIR VV 140 Cod. 673032	1200	2500	140	18	54
DANOPIR VV 150 Cod. 673033	1200	2500	150	15	45
DANOPIR VV 160 Cod. 673034	1200	2500	160	15	45


DATOS TÉCNICOS

DATOS TÉCNICOS	VALOR	UNIDAD	NORMA
Coeficiente de conductividad térmica (7d, 10°C)	0.022	W/ m⋅K	EN 12667
Coeficiente de conductividad térmica declarada	0,028 (e < 80mm); 0,027 (80mm ≤ e < 120mm); 0,026 (e > 120mm)	W/ m · K	EN 12667
Resistencia a la compresión	≥ 175 (espesores < 50 mm) y ≥ 200 (espesores ≥ 50 mm)	kPa	EN 826
Estabilidad dimensional 48 h 70 [°] C y 90% HR	∆long., ∆ancho < 1% ∆esp ≤ 4%	%	EN 1604
Absorción de agua a largo plazo	≤ 2	%	EN 12087
Reacción al fuego del producto	F	-	EN 13501 – 1

MODO DE EMPLEO

- Las planchas deben quedar sujetas a la estructura metálica mediante fijaciones adecuadas que se colocarán en las esquinas de la plancha a una distancia mínima de 100mm y máxima de 250mm del perímetro, según se muestra en la siguiente figura. Las fijaciones deben asegurar una doble función: la de sujeción frente a las acciones de succión provocadas por el viento y la de estabilizar al conjunto aislante-impermeabilización frente a las variaciones térmicas que pueden producirse en una cubierta de este tipo.
- La plancha debe quedar totalmente sujeta, haciendo coincidir cada fijación con la parte superior de la greca del perfil metálico inferior.

CAMPO DE APLICACIÓN

• Aislamiento térmico en edificación, en diversidad de aplicaciones. Especialmente diseñado para cubiertas, como soporte de impermeabilización, por ejemplo en las cubiertas planas industriales con chapa metálica (cubierta deck)

VENTAJAS Y BENEFICIOS

- Menor espesor de aislamiento gracias al bajo coeficiente de conductividad térmica de la espuma de poliisocianurato (PIR).
- Paneles de gran rigidez y poco peso.
- Facilidad de manipulación y puesta en obra.

AVISO

Las informaciones contenidas en este documento y en cualquier otro asesoramiento proporcionado, están dadas de buena fe, basadas en el conocimiento actual y la experiencia de DANOSA cuando los productos son correctamente almacenados, manejados y aplicados, en situaciones normales y de acuerdo a las recomendaciones de DANOSA. La información se aplica únicamente a la (s) aplicación (es) y al (los) producto (s) a los que se hace expresamente referencia. En caso de cambios en los parámetros de la aplicación, o en caso de una aplicación diferente, consulte el Servicio Técnico de DANOSA previamente a la utilización de los productos DANOSA. La información aquí contenida no exonera la responsabilidad de los agentes de la edificación de ensayar los productos para la aplicación y uso previsto, así como de su correcta aplicación conforme a la normativa legal vigente.

Los pedidos son aceptados en conformidad con los términos de nuestras vigentes Condiciones Generales de Venta. DANOSA se reserva el derecho de modificar, sin previo aviso, los datos reflejados en la presente documentación.

Página web: www.danosa.com E-mail: info@danosa.com Teléfono: 902 42 24 52